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Automatic Differentiation in Deep Learning
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® f: can be composed of nonsmooth functions (e.g., ReLU, MaxPooling)

* e RP: weight parameters
® /: loss function
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Figure: lllustration of how AD works



Two assumptions for training nonsmooth DNNs:

@ Backpropagation outputs a gradient almost everywhere (theorem)
@® The process is fast (empirical observation)

f : RP — R differentiable function.
P: program computing f.
backprop(P): program computing (f, V) using backprop AD.

cost(+): execution time to evaluate a program.

Theorem (Baur and Strassen, 1983)

For rational functions f: cost(backprop(P)) <5 x cost(P)

Motivation: generalize to nonsmooth functions.



Locally Lipschitz Functions and the Clarke Subgradient

0°F(x) = conv{ lim VF(xq):xk € diffg, x,  — x}
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How does nonsmooth AD algorithm works 7

Nonsmooth AD

F : RP — R locally Lipschitz function in compositional form

F=gi0...08m|
| |

® | di(x) = Vgi(x) | for smooth g;
® | di(x) € 0°gi(x) | (when you hit a nonsmooth part)

® Ex: g = relu and take d;(0) = relu’(0) = 0 (Tensorflow, Pytorch)
® backprop(P): chain rule the d;'s.

Artifacts

e backprop g1(W) + ... + backprop gn(W) ¢ 0°(g1 + ... + gm) (W)

o relu, : t — relu(—t) + t and relu’(0) = 0

e zero = relup — relu and zero’(0) = 1 (?1)




Conservative gradients (Bolte and Pauwels 2019)

Main properties of conservative gradients

Let Dr : RP 3 RP be a conservative gradient for f : R? — R locally Lipschitz.

e Conservative gradients = gradients a.e

e For all x € RP, 0°F(x) < conv(Dg(x)).

e Compatible with calculus rules contrary to Clarke subdifferential.

e Most common (virtually all, semialgebraic) functions using in DL admits
conservative gradients.

e Faithfully model what is computed by backprop (generated by Pytorch).

® Preserving convergence guaranties.



Nonsmooth Cheap Gradient Principle

Theorem (Nonsmooth Cheap Gradient

Principle, (Bolte et al. 2022)) .- MNIST - ReLU Network
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Let P be a program that computes 5 000
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F =gio...0gn locally Lipschitz.

@ backprop(P) returns an element of a
conservative gradient.

Computational overhead ratio
w

@ cost(backprop(P)) < x cost(P),
where wp, is a constant.

(3} for ReLU networks. o e




Comparison of conservative gradients with other nonsmooth AD

Alternative AD methods

For a locally Lipschitz function F : R — R:

® w := cost(p x p matrix multiplication) ~ p*7 (best algorithm)

* cost(p directional derivatives of F)/cost(F) = p*~2

Computational complexity comparison

F relu network with matrix and vector entries in {-1,0,1}.
® Computing two distinct elements of 0°F is NP-hard.

® Computing two elements of conservative gradients is polynomial time solvable.



Conclusion

- Generalized subgradients cannot capture backpropagation (conservatives do).

- We extend the Baur-Strassen theorem (rational functions) to semi-algebraic
functions (ubiquitous in ML) with a specific arithmetic model.

- We prove worst case lower bound in the nonsmooth context for directional
derivatives and subgradient enumeration.

https://arxiv.org/abs/2206.01730

Thanks for your attention.



