On the complexity of nonsmooth automatic differentiation

Jérôme Bolte, Ryan Boustany, Edouard Pauwels and Béatrice Pesquet-Popescu

ICLR 2023 - The Eleventh International Conference on Learning Representations

Automatic Differentiation in Deep Learning

$$\boxed{\min_{\theta \in \mathbb{R}^P} \quad J(\theta) := \frac{1}{N} \sum_{i=1}^N \ell(f(x_i, \theta), y_i)}$$

- $(x_i, y_i)_{i=1}^N$: training set
- f: can be composed of nonsmooth functions (e.g., ReLU, MaxPooling)
- $\theta \in \mathbb{R}^P$: weight parameters
- ℓ: loss function

Figure: Illustration of how AD works

Motivation

Two assumptions for training nonsmooth DNNs:

- Backpropagation outputs a gradient almost everywhere (theorem)
- 2 The process is fast (empirical observation)

```
f: \mathbb{R}^p \to \mathbb{R} differentiable function.
```

P: program computing f.

 $\operatorname{backprop}(P)$: program computing $(f, \nabla f)$ using $\operatorname{backprop}$ AD.

 $cost(\cdot)$: execution time to evaluate a program.

Theorem (Baur and Strassen, 1983)

For rational functions $f: cost(backprop(P)) \leq 5 \times cost(P)$

Motivation: generalize to nonsmooth functions.

Locally Lipschitz Functions and the Clarke Subgradient

How does nonsmooth AD algorithm works?

Nonsmooth AD

 $F: \mathbb{R}^p \to \mathbb{R}$ locally Lipschitz function in compositional form

$$F=g_1\circ\ldots\circ g_m$$
.

- $d_i(x) = \nabla g_i(x)$ for smooth g_i
- $d_i(x) \in \partial^c g_i(x)$ (when you hit a nonsmooth part)
- Ex : $g_i = \text{relu}$ and take $d_i(0) = \text{relu}'(0) = 0$ (Tensorflow, Pytorch)
- backprop(P): chain rule the d_i 's.

<u>Artifacts</u>

- backprop $g_1(W) + ... + \text{backprop } g_m(W) \notin \partial^c(g_1 + ... + g_m)(W)$
- $\operatorname{relu}_2: t \to \operatorname{relu}(-t) + t$ and $\operatorname{relu}'(0) = 0$
- $zero = relu_2 relu$ and zero'(0) = 1 (?!)

Conservative gradients (Bolte and Pauwels 2019)

Main properties of conservative gradients

Let $D_f : \mathbb{R}^p \rightrightarrows \mathbb{R}^p$ be a conservative gradient for $f : \mathbb{R}^p \to \mathbb{R}$ locally Lipschitz.

- Conservative gradients = gradients a.e
- For all $x \in \mathbb{R}^p$, $\partial^c F(x) \subset \operatorname{conv}(D_F(x))$.
- Compatible with calculus rules contrary to Clarke subdifferential.

- Most common (virtually all, semialgebraic) functions using in DL admits conservative gradients.
 - Faithfully model what is computed by backprop (generated by Pytorch).
 - Preserving convergence guaranties.

Nonsmooth Cheap Gradient Principle

Theorem (Nonsmooth Cheap Gradient Principle, (Bolte et al. 2022))

Let P be a program that computes $F = g_1 \circ \ldots \circ g_m$ locally Lipschitz.

- backprop(P) returns an element of a conservative gradient.
- ② $cost(backprop(P)) ≤ ω_b × cost(P)$, where $ω_b$ is a constant.
- 3 $\omega_b \approx 5$ for ReLU networks.

Comparison of conservative gradients with other nonsmooth AD

Alternative AD methods

For a locally Lipschitz function $F : \mathbb{R}^p \mapsto \mathbb{R}$:

- $\omega := \cot(p \times p \text{ matrix multiplication}) \approx p^{2.7}$ (best algorithm)
- $cost(p \text{ directional derivatives of } F)/cost(F) \geqslant p^{\omega-2}$

Computational complexity comparison

F relu network with matrix and vector entries in $\{-1,0,1\}$.

- **1** Computing two distinct elements of $\partial^c F$ is NP-hard.
- 2 Computing two elements of conservative gradients is polynomial time solvable.

Conclusion

- Generalized subgradients cannot capture backpropagation (conservatives do).
- We extend the Baur-Strassen theorem (rational functions) to semi-algebraic functions (ubiquitous in ML) with a specific arithmetic model.
- We prove worst case lower bound in the nonsmooth context for directional derivatives and subgradient enumeration.

https://arxiv.org/abs/2206.01730

Thanks for your attention.