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Automatic Differentiation in Deep Learning

min
θPRP

Jpθq :“
1

N

N
ÿ

i“1

ℓpf pxi , θq, yi q

‚ pxi , yi q
N
i“1: training set

‚ f : can be composed of nonsmooth functions (e.g., ReLU, MaxPooling)

‚ θ P RP : weight parameters

‚ ℓ: loss function

Figure: Illustration of how AD works
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Motivation

Two assumptions for training nonsmooth DNNs:

1 Backpropagation outputs a gradient almost everywhere (theorem)

2 The process is fast (empirical observation)

f : Rp Ñ R differentiable function.

P: program computing f .

backproppPq: program computing (f , ∇f ) using backprop AD.

costp¨q: execution time to evaluate a program.

Theorem (Baur and Strassen, 1983)

For rational functions f : costpbackproppPqq ď 5 ˆ costpPq

Motivation: generalize to nonsmooth functions.
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Locally Lipschitz Functions and the Clarke Subgradient

F

x

F (x)

x1 x2

∂c
F (x1)

∂c
F (x2)

BcF pxq “ conv

"

lim
kÑ`8

∇F pxkq : xk P diffF , xk ÝÑ
kÑ`8

x

*

4 / 9



How does nonsmooth AD algorithm works ?

Nonsmooth AD

F : Rp Ñ R locally Lipschitz function in compositional form

F “ g1 ˝ . . . ˝ gm .

‚ di pxq “ ∇gi pxq for smooth gi

‚ di pxq P Bcgi pxq (when you hit a nonsmooth part)

‚ Ex : gi “ relu and take di p0q “ relu1
p0q “ 0 (Tensorflow, Pytorch)

‚ backproppPq: chain rule the di ’s.

Artifacts

• backprop g1pW q ` ... ` backprop gmpW q R Bcpg1 ` ... ` gmqpW q

• relu2 : t Ñ relup´tq ` t and relu1
p0q “ 0

• zero “ relu2 ´ relu and zero1p0q “ 1 (?!)
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Conservative gradients (Bolte and Pauwels 2019)

Main properties of conservative gradients

Let Df : Rp Ñ Rp be a conservative gradient for f : Rp Ñ R locally Lipschitz.

• Conservative gradients = gradients a.e

• For all x P Rp, BcF pxq Ă convpDF pxqq.

• Compatible with calculus rules contrary to Clarke subdifferential.

• Most common (virtually all, semialgebraic) functions using in DL admits
conservative gradients.

• Faithfully model what is computed by backprop (generated by Pytorch).

• Preserving convergence guaranties.
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Nonsmooth Cheap Gradient Principle

Theorem (Nonsmooth Cheap Gradient
Principle, (Bolte et al. 2022))

Let P be a program that computes
F “ g1 ˝ . . . ˝ gm locally Lipschitz.

1 backproppPq returns an element of a
conservative gradient.

2 costpbackproppPqq ď ωb ˆ costpPq,
where ωb is a constant.

3 ωb « 5 for ReLU networks. 1 2 3 4 5 6 10 20
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Comparison of conservative gradients with other nonsmooth AD

Alternative AD methods

For a locally Lipschitz function F : Rp ÞÑ R:

‚ ω :“ costpp ˆ p matrix multiplicationq « p2.7 (best algorithm)

‚ costpp directional derivatives of F q{costpF q ě pω´2

Computational complexity comparison

F relu network with matrix and vector entries in {-1,0,1}.

1 Computing two distinct elements of BcF is NP-hard.

2 Computing two elements of conservative gradients is polynomial time solvable.

8 / 9



Conclusion

- Generalized subgradients cannot capture backpropagation (conservatives do).

- We extend the Baur-Strassen theorem (rational functions) to semi-algebraic
functions (ubiquitous in ML) with a specific arithmetic model.

- We prove worst case lower bound in the nonsmooth context for directional
derivatives and subgradient enumeration.

https://arxiv.org/abs/2206.01730

Thanks for your attention.
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