On the complexity of nonsmooth automatic differentiation

HEE Toulouse
School of

=eonomics Jérome BOLTE, Ryan BOUSTANY, Edouard PAUWELS, Béatrice PESQUET-POPESCU
THALES Toulouse School of Economics, IRIT. Université de Toulouse, ANITI, THALES, France
Motivation Nonsmooth AD with conservative gradients

Baur and Strassen’s result, 1983 How does backprop works ? Conservative gradients

Let F': R"™ — R be a locally Lipschitz continuous.

We say that Dp : R" = R" is a conservative gradient for F' it Dy has a
closed graph, is locally bounded, and is nonempty with

The arithmetic complexity of evaluating a rational function’s derivative is
at most | 5 | times the complexity of function evaluation.

Consider a locally Lipschitz function F' : RP — R with a m-compositional
representation implemented by a program P

[t has now been fifteen years of extensive and global empirical DNN training F=gio...0gq. - d

with nonsmooth components. It was founded on two assumptions: &(F o¥)(t) = Dp(y(t))¥(t) a.e.

o backpropagation outputs a gradient almost. e For each 4, z, choose | d;(z) € 9%g:(x) |

@the process is fast.

o Fx : g; = ReLU and take d;(0) = 0 (Tensorflow, Pytorch) whenever ~y is an absolutely continuous curve in R™. F' is called path differ-

entiable.
Motivation: extends the Baur-Strassen’s result to the nons- : ;
Chain-rule the d;’s:

mooth case. Some class of path differentiable functions:

dp(z) = dy (g2 (- .- (gm(@)) ..)) X do (g3 (- - - (Gm(2)) ..)) - .. X do(x)

[J [J [J [J [J [J [J f t.
Automatic differentiation in Machine learning GCOH\.@X HHEHOHS, | - | |
= backprop(P) computes dp(x). @semialgebraic functions (for instance piecewise polynomial functions),

- 0 A h - ninoe of | net- o ® “definable” functions: most of the functions implemented in practice.
Given a training set {(x;, ;) }i=1..n, the supervised training of a neural net This is how PyTorch and TensorFlow work.

work f consists in minimizing the empirical risk:

The chain-rule, which is required for AD, usually fails for Clarke subgradients. = Backpropagation is modeled by conservative gradients!
N — introduce the conservative gradients. = Sharp calculus rules used in ML are extended to nonsmooth

1
emin J(0) = => L(f(x;,0),y;) (1) functions!
cRY j\[i=:1

Cheap conservative gradient

where 6 € R are the network’s weight parameters and ¢ is a loss function.
In general, f is a composition of nonsmooth functions. Let F': RP — R be a locally Lipschitz function and P a program who compute F' using a dictionary D composed by path differentiable operations.
If| F=g¢gy0...0g¢,, |and each g; are operations on D, then :

o F' is path differentiable,
@| cost(backprop(P)) < jwyp X cost(P) where wy is a constant.

e Automatic differentiation (AD): A program that evaluates
derivatives of numeric functions expressed as computer programs in an
eficient and accurate way.

Automatic
F(x) (...)s differentiation J af(0 {...1;
7 < Computational properties of conservative gradients vs others nonsmooth AD frameworks
human |
programmer E
= B : Computational hardness of subgradient
y =fx)p---- symbolic differentiation 12 =1 Others alternative AD approaches p , 5
(human/computer) enumeration
Figure: How automatic differentiation relates to symbolic differentiation
Computational overhead ratio Goal: show the computational difficulty of dealing with the Clarke subgra-
dient compared to conservative gradient.

To solve (1), we should use AD to compute gradients (in the smooth case) Minimum value of the quotient of the cost required to evaluate a program
or surrogate gradients (in the nonsmooth case). and “its” derived program by the cost to evaluate merely the program. Problem: conservative gradient enumeration

Consider F': RP — R a ReLU network, £ € RP and Dp: RP = R? g

Clarke gradients : a nonsmooth oracle
5 Let F': R? — R be a locally Lipschitz function. conservative gradient for F.

Given a locally Lipschitz continuous function F' : RP — R, the Clarke

Others alternative implementable AD approaches:
subdifferential of F'is

Compute two distinct elements in Dp(x) or one element if it

e Try to evaluate elements of 0°F', based on directional derivatives - Khan is a singleton.
and Barton (2012;2013;2015)
O°F(x) = conv { lim VE(z;):a € diffp, 2, — g;} (2) e Successive local approximations of F', based on lexicographic derivatives
k——+00 k——+o00 , , ,
e Computing Clarke subgradients using forward AD

where diff g is the full measure set where F' is differentiable and VF' is the NP-Hard Hardest

| Problem: All these procedures either require to evaluate p directional
standard gradient.

derivatives. ° Fasy -7

e Medium — NP
Hard e Hard — NP-Complete
e Hardest - NP-Hard

(9CF(x1) AL

RelLU networks

NP _ _ Medium

Given a set of matrices My € RP*P My € RP2*P1 - My | € RPL-17PL=2 | 5 | -
M7, € RYPi-1 we consider the associated ReLU network F': R? — R: - -

F:xw— MiReLU(M_1ReLU(... Mix)).

=Y

Clarke subgradients and NP-Hardness

Link between p directional derivatives and matrix

e Let F' be a ReLU network with matrix and vector entries in {—1,0, 1}
multiplication

and r € RP

Notations

Let F': R? — R be a locally Lipschitz function.

o The enumeration problem with | Dp = 0°F |is NP-hard.
® Deciding if F' is not differentiable at is NP-hard.

Let F': RP — R be a ReLU network function, computational cost defined
e D: collection of elementary operations used to compute F'. over R by circuit complexity ("number of operations'):

e D’": collection of elementary operations used to compute F' and a
surrogate gradient of F'.

. . .)
e P : program which computes £ using operations on D. c(p) = p Enumeration problem with backprop and conservative gradients

e backprop(P): program that computes F' and its backpropagation. cost(p directional derivatives of F) > ¢(p) can be solved in polynomial time (easy).

c(p) := cost(p x p matrix multiplication)

e cost(P): number of D operations required by the program P. . . ,
= Conservative gradients etablish a "nonsmooth cheap gra-

dient" with favorable computational properties compared to
others nonsmooth oracles.

e cost(backprop(P)): number of D’ operations required by the program
backprop(P). = suflers from computational overhead scaling linearly in p

Applications with ReLU networks

Computational overhead ratio of MLP Cross Entropy with MNIST. Computational overhead ratio of MLP Cross Entropy with MNIST according to the number of

layers /neurons and the batch size.

1o MNIST - reLU Network

Neurons :
- ' MNIST - reLU Network with 10 layers
1000 " _MNIST reLU Network with 1000 neurons per layer 10 - y
2000 Layers Neurons
w3000 e 1 s 1000
g - 2000
s 4000 2
e 3 _ w3000
8 A 8
s 5000 — B 4000
s 5 s 5000
10

Computational overhead ratio

Computational overhead ratio
Computational overhead ratio

64 128 256 64 128 256

Batch size Batch size

