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Motivation

Baur and Strassen’s result, 1983

The arithmetic complexity of evaluating a rational function’s derivative is
at most 5 times the complexity of function evaluation.

It has now been fifteen years of extensive and global empirical DNN training
with nonsmooth components. It was founded on two assumptions:

1 backpropagation outputs a gradient almost.
2 the process is fast.

Motivation: extends the Baur-Strassen’s result to the nons-
mooth case.

Automatic differentiation in Machine learning

Given a training set {(xi, yi)}i=1...N , the supervised training of a neural net-
work f consists in minimizing the empirical risk:

min
θ∈RP

J(θ) := 1
N

N∑
i=1

ℓ(f (xi, θ), yi) (1)

where θ ∈ RP are the network’s weight parameters and ℓ is a loss function.
In general, f is a composition of nonsmooth functions.

• Automatic differentiation (AD): A program that evaluates
derivatives of numeric functions expressed as computer programs in an
efficient and accurate way.

Figure: How automatic differentiation relates to symbolic differentiation

To solve (1), we should use AD to compute gradients (in the smooth case)
or surrogate gradients (in the nonsmooth case).

Clarke gradients : a nonsmooth oracle

Given a locally Lipschitz continuous function F : Rp → R, the Clarke
subdifferential of F is

∂cF (x) = conv
{

lim
k→+∞

∇F (xk) : xk ∈ diffF , xk −→
k→+∞

x

}
(2)

where diffF is the full measure set where F is differentiable and ∇F is the
standard gradient.
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Notations

Let F : Rp 7→ R be a locally Lipschitz function.
• D: collection of elementary operations used to compute F .
• D′: collection of elementary operations used to compute F and a
surrogate gradient of F .
• P : program which computes F using operations on D.
• backprop(P ): program that computes F and its backpropagation.
• cost(P ): number of D operations required by the program P.
• cost(backprop(P )): number of D′ operations required by the program
backprop(P ).

Nonsmooth AD with conservative gradients

How does backprop works ?

Consider a locally Lipschitz function F : Rp → R with a m-compositional
representation implemented by a program P

F = g1 ◦ . . . ◦ gm.

• For each i, x, choose di(x) ∈ ∂cgi(x) .
• Ex : gi = ReLU and take di(0) = 0 (Tensorflow, Pytorch)

Chain-rule the di’s:
dF (x) := d1 (g2 (. . . (gm(x)) . . .)) × d2 (g3 (. . . (gm(x)) . . .)) . . . × dm(x)

⇒ backprop(P ) computes dF (x).

This is how PyTorch and TensorFlow work.

The chain-rule, which is required for AD, usually fails for Clarke subgradients.
⇒ introduce the conservative gradients.

Conservative gradients

Let F : Rn → R be a locally Lipschitz continuous.
We say that DF : Rn ⇒ Rn is a conservative gradient for F if DF has a
closed graph, is locally bounded, and is nonempty with

d
dt

(F ◦ γ)(t) = DF (γ(t))γ̇(t) a.e.

whenever γ is an absolutely continuous curve in Rn. F is called path differ-
entiable.

Some class of path differentiable functions:
1 convex functions,
2 semialgebraic functions (for instance piecewise polynomial functions),
3 “definable” functions: most of the functions implemented in practice.

⇒ Backpropagation is modeled by conservative gradients!
⇒ Sharp calculus rules used in ML are extended to nonsmooth
functions!

Cheap conservative gradient

Let F : Rp 7→ R be a locally Lipschitz function and P a program who compute F using a dictionary D composed by path differentiable operations.
If F = g1 ◦ . . . ◦ gm and each gi are operations on D, then :

1 F is path differentiable,
2 cost(backprop(P )) ≤ ωb × cost(P ) where ωb is a constant.

Computational properties of conservative gradients vs others nonsmooth AD frameworks

Others alternative AD approaches

Computational overhead ratio

Minimum value of the quotient of the cost required to evaluate a program
and “its” derived program by the cost to evaluate merely the program.

Let F : Rp → R be a locally Lipschitz function.

Others alternative implementable AD approaches:
• Try to evaluate elements of ∂cF , based on directional derivatives - Khan
and Barton (2012;2013;2015)
• Successive local approximations of F , based on lexicographic derivatives
• Computing Clarke subgradients using forward AD

Problem: All these procedures either require to evaluate p directional
derivatives.

ReLU networks

Given a set of matrices M1 ∈ Rp1×p, M2 ∈ Rp2×p1, . . . ML−1 ∈ RpL−1×pL−2,
ML ∈ R1×pL−1 we consider the associated ReLU network F : Rp → R:

F : x 7→ MLReLU(ML−1ReLU(. . . M1x)).

Link between p directional derivatives and matrix
multiplication

Let F : Rp → R be a ReLU network function, computational cost defined
over R by circuit complexity ("number of operations"):

1 c(p) := cost(p × p matrix multiplication)

2 c(p) ≥ p2

3 cost(p directional derivatives of F ) ≥ c(p)

⇒ suffers from computational overhead scaling linearly in p

Computational hardness of subgradient
enumeration

Goal: show the computational difficulty of dealing with the Clarke subgra-
dient compared to conservative gradient.

Problem: conservative gradient enumeration

Consider F : Rp → R a ReLU network, x ∈ Rp and DF : Rp ⇒ Rp a
conservative gradient for F .

Compute two distinct elements in DF (x) or one element if it
is a singleton.

Clarke subgradients and NP-Hardness

Let F be a ReLU network with matrix and vector entries in {−1, 0, 1}
and x ∈ Rp :
1 The enumeration problem with DF = ∂cF is NP-hard.
2 Deciding if F is not differentiable at x is NP-hard.

Enumeration problem with backprop and conservative gradients
can be solved in polynomial time (easy).

⇒ Conservative gradients etablish a ”nonsmooth cheap gra-
dient" with favorable computational properties compared to
others nonsmooth oracles.

Applications with ReLU networks

Computational overhead ratio of MLP Cross Entropy with MNIST.
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Computational overhead ratio of MLP Cross Entropy with MNIST according to the number of
layers/neurons and the batch size.
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MNIST - reLU Network with 1000 neurons per layer
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